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Abstract. We investigate coupled optical interface modes in Thue-Morse (TM) dielectric superlattices
composed of two kinds of materials with frequency-dependent dielectric functions. Four basic transfer ma-
trices are derived in the dielectric continuum approximation. By a standard matrix operation method, the
trace map of the global transfer matrix in this configuration is obtained. Under Born-von Kármán bound-
ary conditions, the frequency spectra are calculated and their branching rules together with the quartet
property are elucidated. It is further proved rigorously that nearly all eigenmodes in this framework have
extended nature. The quartet of the eigenmodes is illuminated analytically. The common features and
pronounced differences compared with coupled optical interface modes in periodic and Fibonacci dielectric
superlattices as well as with other collective elementary excitations in TM structures are also revealed.

PACS. 63.20.Dj Phonon states and bands, normal modes, and phonon dispersion – 68.35.Ja Surface
and interface dynamics and vibrations – 71.45.-d Collective effects 61.44.Br Quasicrystals

1 Introduction

The discovery of quasicrystal by Shechtman et al. in 1984
has inspired much interest concerning the physical prop-
erties of the so-called quasiperiodic structures [1]. As a
representative one-dimensional model of a quasicrystal,
the Fibonacci lattice has gained a great deal of atten-
tion and becomes a hotly investigated subject. Many new
advances, along with some earlier results about the incom-
mensurate discrete Schrödinger equation, provide us with
an approach to understand the crossover from periodicity
to disorder. Subsequently, other aperiodic but yet deter-
ministic structures come to the attention of researchers.
One example is the Thue-Morse (TM) lattice. The spe-
ciality of this structure is that it has no translational in-
variance but supports delocalized electronic states [2,3],
which implies that it is an intermedium linking perfect
periodic and Fibonacci structures. Because of this point,
the TM sequence has attracted much attention in recent
years [4]. Until now we have known that the energy spec-
trum of electrons in a TM chain, which is calculated in
the on-site model, is similar to a Cantor set [2], and un-
der certain circumstances the Fourier transform of a TM
chain is singular continuous [5]. Moreover, the electronic
and vibrational properties of a TM lattice in a general
model have also been studied [6,7].
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On the other hand, from the standpoints of ex-
perimenters, the significant progress in the fabrication
technology can supply us with many elaborate artificial
structures. Thus a feasible way to explore the physical
behavior in aperiodic systems is to construct semiconduc-
tor, metal, or dielectric superlattices according to corre-
sponding aperiodic sequences. To understand the results
of experiments, it is useful to study the elementary ex-
citations in these aperiodic structures, as an natural ex-
pansion of the excitations in periodic superlattices [8,9].
Among many kinds of excitations in superlattices, the op-
tical phonons hold an important place and deserve a care-
ful investigation [8], especially in quasiperiodic and aperi-
odic multilayers [10]. One can see in the following that the
optical phonons in a dielectric superlattice usually have
two types: the bulklike modes and the interface modes [8].
Interestingly, the latter will be coupled to give collective
excitations of the whole structure when the layer thickness
of the superlattice is relatively small.

In this paper our main interest is to study the prop-
erties of coupled optical interface modes in dielectric su-
perlattices arranged in the TM sequence and to reveal
its common features and pronounced differences compared
with other elementary excitations in TM structures, such
as electrons [3,6,7], acoustic phonons [11], and plasmon
polaritons [12]. In Section 2 we first introduce the dielec-
tric continuum approximation for TM superlattices, then
the transfer matrices are established and the trace map
is derived; in Section 3 we provide calculated results and
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theoretical analyses of the frequency spectra and the elec-
trostatic potential distributions, which are the counter-
parts of the energy spectra and the wave functions of elec-
trons in TM chains; finally a brief summary is presented.

2 Model and formulation

With two building blocks denoted by L and S, we can
construct any generation of the TM sequence by the
successive substitutions L → LS and S → SL. If the
initial block is chosen as L, this process will give the fol-
lowing sequences L → LS → LSSL → LSSLSLLS →
LSSLSLLSSLLSLSSL → · · · . On the other hand, if we
begin with S, the growing sequences will be S → SL →
SLLS → SLLSLSSL → SLLSLSSLLSSLSLLS →
· · · . To distinguish the neighboring same blocks such
as LL and SS, each block of TM superlattices is composed
of two layers with different dielectric materials A and B.
Thus the jth generation of a TM superlattice has 2j blocks
and 2j+1 layers. A and B layers in L and S blocks have the
thickness dA

L , dB
L , dA

S , and dB
S , respectively. Furthermore,

A and B layers are with different dielectric functions εA

and εB, which are chosen to be the same as those of the
corresponding bulk materials and are frequency dependent
by εA(B)(ω) = εA(B),∞(ω2 − ω2

A(B),LO)/(ω2 − ω2
A(B),TO),

where ωA(B),LO and ωA(B),TO are frequencies of the lon-
gitudinal and transverse optical phonons, and εA(B),∞ is
the high-frequency limit of the dielectric function.

Here we would like to illustrate the two types of optical
phonons in dielectric superlattices, i.e., the bulklike modes
and the interface modes. In the long wavelength limit, it
is appropriate to adopt the dielectric continuum model,
and each optical mode generates a macroscopic electric
field E described by ∇×E = 0 and ∇·D = 0, where D =
ε(ω)E. From them we can define an electrostatic potential
Φ(r, t) to give E = −∇Φ(r, t), then in each layer of a
superlattice Φ(r, t) satisfies the equation ε(ω)∇2Φ(r, t) =
0 [8,13], where ε(ω) = εA(ω) or εB(ω).

For optical phonons with the frequency ωA,LO, one has
εA(ω) = 0, εB(ω) �= 0, so in A layers D = 0 and in B lay-
ers ∇2Φ(r, t) = 0. The boundary conditions at interfaces
require that in B layers Φ(r, t) = 0 and E = 0, i.e., the
macroscopic electric fields associated with these modes are
confined in A layers. Every layer still holds a sequence of
standing-wave resonances identical to those of the bulk
dielectric materials A. These modes are bulklike modes.
Apparently, the bulklike modes of different dielectric lay-
ers do not couple each other. A similar argument can be
given for the optical phonons with a frequency ωB,LO,
which correspond to the bulklike modes confined in B lay-
ers. Furthermore, through Huang’s equations [14], one can
attest that the optical phonons with frequencies ωA,TO

and ωB,TO are also bulklike modes.
On the contrary, for the other optical modes,

εA(ω) �= 0 and εB(ω) �= 0, thus ∇2Φ(r, t) = 0 in the
whole superlattice. Through the electrostatic continuum
conditions at the interfaces one can find that in this case
Φ(r, t) attenuates to zero exponentially when one moves

away from the interface. The corresponding modes are
called interface modes [15]. These modes generate macro-
scopic electric fields distributing through several adjacent
dielectric layers. Therefore, the interface modes locating
at neighboring interfaces superpose together, leading to
collective excitations of the whole structure, which are ca-
pable of transporting energy along the growth direction
of the superlattice. Hereafter we call them coupled optical
interface modes. Because of the emergence of these cou-
pled modes, the original dispersion relations of bulk dielec-
tric materials are modified and new connections between
frequency and wave vector appear. A simple calculation
shows frequencies of coupled optical interface modes sat-
isfy εA(ω)/εB(ω) < 0.

Note that the two surfaces of each superlattice layer
are still with periodic lattices and have translational in-
variance, then the electrostatic potentials associated with
the interface modes can be described by a two-dimensional
wave vector k parallel to the interface [8]. Now the z
axis is chosen to be perpendicular to the superlattice
planes and denotes the aperiodic direction, and x is par-
allel to the superlattice plane. Without loss of general-
ity, we can write the electrostatic potential as Φ(r, t) =
φ(z)exp [i(kx − ωt)], where k is chosen to be along the x
axis, and the nontrivial part φ(z) satisfies

(
d2

dz2
− k2

)
φ(z) = 0. (1)

Take n as the layer index and the electrostatic continuum
conditions at the interfaces are

φn(z) = φn+1(z), εn
dφn(z)

dz
= εn+1

dφn+1(z)
dz

· (2)

For the TM superlattice we considered, the solution of
equation (1) in the mth block can be written as φm(z) =
pmekz + qme−kz in the B layer, and φm(z) = gmekz +
hme−kz in the A layer. Thus we have

(
gm+1

hm+1

)
= Mm+1,m

(
gm

hm

)
, (3)

where Mm+1,m is a transfer matrix. In the current situa-
tion there are only four types of Mm+1,m’s, which are

MLL =

(
αLekdA

L βL

−βL γLe−kdA
L

)
,

MSL =

(
αLek(dA

S +dA
L)/2 βLek(dA

S −dA
L)/2

−βLek(dA
L−dA

S )/2 γLe−k(dA
S +dA

L)/2

)
,

MLS =

(
αSek(dA

L+dA
S )/2 βSek(dA

L−dA
S )/2

−βSek(dA
S −dA

L)/2 γSe−k(dA
S +dA

L)/2

)
,

MSS =

(
αSekdA

S βS

−βS γSe−kdA
S

)
,

(4)
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where

αL(S) = coshkdB
L(S) +

1
2

(
εB

εA
+

εA

εB

)
sinhkdB

L(S),

βL(S) =
1
2

(
εB

εA
− εA

εB

)
sinh kdB

L(S),

γL(S) = coshkdB
L(S) −

1
2

(
εB

εA
+

εA

εB

)
sinhkdB

L(S). (5)

The matrices above are all unimodular because
αL(S)γL(S) + β2

L(S) = 1. With these four basic transfer
matrices, a rather general model of TM dielectric super-
lattices is defined. When dA

L = dA
S and dB

L �= dB
S , it reduces

to the common on-site model; on the contrary, if dA
L �= dA

S
and dB

L = dB
S , the conventional transfer model is attained.

It is similar to the general models of electrons and classical
vibrations in TM chains [6].

By the global equation(
gN+1

hN+1

)
= Mj

(
g1

h1

)
, (6)

where N = 2j, we can define a global transfer matrix Mj

for the jth generation of a TM superlattice. Obviously, Mj

is a product of multiplying the four basic matrices MLL,
MLS, MSL, and MSS in the proper order. It can also be
obtained through the recursion relations

Mj = Nj−1N j−1, M j = N j−1Nj−1,

Nj = Mj−1Nj−1, N j = M j−1N j−1, (7)

for j ≥ 1 and with M0 = MLL, M0 = MSS ,
N0 = MLS, and N0 = MSL. For example,
the first a few global transfer matrices are M1 =
MLSMSL, M2 = MLLMLSMSSMSL, and M3 =
MLSMSLMLLMLSMSLMLSMSSMSL, etc.

For matrix iteration, one is always concerned about
the trace operation [16]. It can be derived that the global
transfer matrices for successive generations of a TM su-
perlattice satisfy a relation, which is

Mj = Mj−2Mj−3Mj−2M
−1
j−3Mj−1 (j ≥ 3), (8)

where M−1
j−3 denotes the converse matrix of Mj−3. Defin-

ing three traces rj = TrMj, sj = TrMj−1M
−1
j−2MjMj−2,

and tj = TrMj−1Mj , one can further obtain

rj+1 = rj−1sj−1tj−1 + rj − rj−2(sj−1 + tj−1),
sj+1 = sjtj + rj−2rj−1tj−1 − r2

j−2 − r2
j−1 − t2j−1 + 2,

tj+1 = sjtj + rj−2rj−1sj−1 − r2
j−2 − r2

j−1 − s2
j−1 + 2,

(9)
for j ≥ 3. The trace map above is too intricate. Fortu-
nately, for j ≥ 2 there is an invariant

I = rj+1 − rj−1(sj + tj) + rjr
2
j−1. (10)

By the basic transfer matrices expressed in
equations (4, 5), we find that the invariant always

equals 2. And there are also two important equalities for
j ≥ 2, which are

sj = tj ,
sj + tj = 2rj−1(rj − 1). (11)

Using equations (10, 11), we attest that the complicated
trace map equation (9) can be simplified to

rj+1 = r2
j−1(rj − 2) + 2. (12)

As usual, defining χj = 1
2TrMj = 1

2rj , equation (12) can
be rewritten into the accustomed form

χj+1 = 4χ2
j−1(χj − 1) + 1, (13)

where j ≥ 2. It is a striking result and shows that even in a
relatively general model of TM dielectric superlattices the
trace map takes a form as same as that in the conventional
on-site model [17].

Under Born-von Kármán boundary conditions, i.e.,
gN+1 = g1 and hN+1 = h1 in equation (6), and at the same
time considering the unimodularity of the global transfer
matrices, the eigenfrequencies of interface optical modes
in the given lth generation of a TM superlattice can be
calculated by the equation

χl = 1. (14)

Combining it with equation (13), we can find two unam-
biguous facts: Firstly, the solutions of equation (14) are
just the roots of following equations

χl−2 = χl−3 = · · · = χ1 = 0, (15)

and
χ2 = 1. (16)

Secondly, the eigenfrequencies of a lower generation of
a TM superlattice are preserved in higher generations. The
reason is that χj = 1 results in

χj+1 = χj+2 = · · · = 1, (17)

where j is an arbitrary generation number. As shown in
the following section, these two facts play central roles in
our theoretical analyses of the calculated results.

Each eigenfrequency can create a special distribution
of electrostatic potential. First consider the potential am-
plitudes in A layers. By equations (3, 4), gm and hm of
the mth block can be obtained iteratively when g1 and h1

are given. After gm and hm are obtained, the potential
amplitude in each A layer can be determined; then the
potential distribution in each B layer, characterized by pm

and qm, can also be calculated through the interface con-
tinuum conditions. For a simplified description here, we
are only concerned about the averaged potential over each
layer. Thus in the mth block we have

φA
m =

sinh(kdA
m/2)

kdA
m/2

(gm + hm) (18)
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for the A layer and

φB
m =

1
kdB

m

{[
sinh kdB

m +
εA

εB
(cosh kdB

m − 1)
]

gmekdA
m/2

+
[
sinh kdB

m − εA

εB
(coshkdB

m − 1)
]

hme−kdA
m/2

}
(19)

for the B layer, where dA
m = dA

L(S) and dB
m = dB

L(S) for
the mth block being L(S) type.

3 Results and analyses

To get the concrete numerical results of the TM dielectric
superlattices studied in this paper, we choose εA,∞ = 2.25,
ωA,TO = 31 THz, and ωA,LO = 50 THz as the values of
NaCl; and εB,∞ = 2.1, ωB,TO = 27 THz, and ωB,LO =
40 THz as the values of KCl.

3.1 Frequency spectra

Figure 1 is the frequency spectrum of coupled optical in-
terface modes of the eighth generation of a TM dielectric
superlattice. It can be seen from the spectrum that the
allowed frequencies first form four branches, of which two
locate between ωB,TO and ωA,TO and the other two locate
between ωB,LO and ωA,LO. For the given lth generation of
the TM superlattice the frequency number of every branch
is 2l−1 +2 and here l equals eight. Our detailed investiga-
tion shows that every branch breaks up into six subbands.
The first (sixth) and third (fourth) subbands are formed
by SS (LL) clusters and other subbands are formed by
isolated S (L) blocks. Each subband has almost the same
number of modes and splits further. Just as shown in the
insets of Figure 1, the second and the fifth subbands are
trifurcate (see the right-bottom inset) and the others are
bifurcate (see the left-top inset), respectively. All of these
are consistent with the branching rules of the electronic
energy spectrum of a TM chain in the on-site model [3].
However, the branching rules shown here are different from
those of the spectrum of coupled interface optical modes
in a Fibonacci dielectric superlattice, where only trifurca-
tion is discovered [10]. This result is not surprising because
the branching rules derived from the trace maps depend
on the substitution rules.

By the definitions of the basic transfer matrices in
equation (4), a quantitative interpretation can be given
as to why the frequency spectrum firstly splits into four
branches. For convenience, we use a, b, c, and d to de-
note these four branches. Thus for every frequency ωa in
branch a, there are three corresponding frequencies ωb,
ωc, and ωd, which locate respectively in the other three
branches b, c, and d. These four frequencies satisfy a rela-
tion as

εA(ωa)
εB(ωa)

=
εB(ωb)
εA(ωb)

=
εB(ωc)
εA(ωc)

=
εA(ωd)
εB(ωd)

· (20)
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Fig. 1. The frequency spectrum of a TM dielectric superlat-
tice at the eighth generation, where kdA

S = 0.5, kdA
L = 1.0,

kdB
S = 1.5, and kdB

L = 2.0. Four branches a, b, c, and d are
marked. Inset at top-left: the enlarged pattern of the first sub-
band of branch b, showing bifurcation. Inset at bottom-right:
the enlarged pattern of the fifth subband of branch c, showing
trifurcation.

Thus one can prove analytically that

χj(ωa) = χj(ωb) = χj(ωc) = χj(ωd). (21)

A simple derivation shows these two relations originate
from the factors ( εB

εA
+ εA

εB
) and ( εB

εA
− εA

εB
) in equation (5).

Defining f1(εA, εB) = εB

εA
+ εA

εB
and f2(εA, εB) = εB

εA
− εA

εB
,

one can prove easily that f1(εA, εB) = f1(εB, εA) and
f2(εA, εB) = −f2(εB, εA). Thus we have α(εA, εB) =
α(εB, εA), β(εA, εB) = −β(εB, εA), and γ(εA, εB) =
γ(εB, εA) in equation (5). Interestingly, these transfor-
mations of α, β, and γ do not affect the traces of the
four basic transfer matrices as well as Mj. Further anal-
yses show that an equation εA

εB
= t determines two fre-

quencies ωa and ωd, and another equation εA

εB
= 1

t de-
termines other two frequencies ωb and ωc, where t is the
solution of equation (14) that locates between −1 and 0.
Obviously the four frequencies ωa, ωb, ωc, and ωd satisfy
equations (20, 21).

In fact, this kind of symmetric property of the spectra
can now be proved to exist widely in problems of coupled
optical interface modes in deterministic aperiodic struc-
tures [10,17]. Considering there are four main branches
here, we name the property as quartet and its effects on
the amplitude profiles of electrostatic potentials will be
shown in the next subsection.

3.2 Electrostatic potential distributions

The characteristics of the frequency spectra arising from
the deterministic aperiodic structure should also be re-
flected in the distributions of electrostatic potentials,



Sheng-Feng Cheng and Guo-Jun Jin: Optical modes in Thue-Morse dielectric superlattices 295

which are related to the long-wavelength optical vibra-
tions. Actually, the potential distributions are important
in Raman scattering [18]. In Figure 2 two amplitude pro-
files of potential distributions are given. They all have de-
localized features. To prove analytically that all the poten-
tial profiles are extended for the lth generation of the TM
superlattice, we invoke three Pauli matrices σx, σy, σz ,
and a 2 × 2 identity matrix σI to resolve the matrices
Mj, M j , Nj , and N j [6,19], where j is an arbitrary gener-
ation number less than or equal to l. After much algebra,
one can attest that the eigenfrequencies from the equa-
tion χj−2 = 0 strictly render Mj = M j = σI . Combining
this result with equation (7), it is easy to make clear that
the global transfer matrix for a higher generation (≥j) of
the TM superlattice is a periodiclike NjN j array mixed
with the identity matrix σI . For example, Mj+1 = NjN j ,
Mj+2 = σINjσIN j , and Mj+3 = NjN jσINjN jNjσIN j ,
etc. In this way the aperiodic TM superlattice turns into
a periodic one by neglecting the layers giving the iden-
tity matrix. Thus all the electrostatic potential distri-
butions for the frequencies given by equation (15) are
extended. With extended, we mean that amplitudes do
not localize in only some layers but spreads through the
whole superlattice in a regular way. Besides being ex-
tended, they have another interesting feature that the
envelope of any amplitude array forms a TM arrange-
ment. Our further analyses show that this property orig-
inates from the fact that when χj−2 = 0 the fourth ma-
trix elements of Nj and N j equal zero, which leads to
φj = φ2j+1 = φ2×2j+1 = φ3×2j+1 = · · · . These relations
are proved thoroughly by our numerical calculations and
can also be discerned from Figure 2, where j = 3 and
l = 8. Clearly the envelope of potential amplitudes forms
the fifth generation of the TM sequence.

On the other hand, except the above eigenfrequencies
that support delocalized amplitude profiles of electrostatic
potentials, the remnants determined by equation (16) do
not render Mj and M j being unit matrices and they ac-
tually correspond to the potential profiles with linearly
growing amplitudes as the layer number of the superlattice
increases [19]. Although equation (16) is a polynomial
equation of ω with the order being thirty-two, the num-
ber of eigenfrequencies determined by this equation is only
sixteen because ω must be positive. The numerical calcu-
lations further show that these sixteen eigenfrequencies
just locate at the band edges of the frequency spectrum
shown in Figure 1.

About the electrostatic potential distributions there is
another interesting property also named quartet, which
means that potential profiles given by the four corre-
sponding frequencies determined by equation (20) are ex-
actly the same or very similar. This can be seen from
Figure 2. The eigenfrequency for Figure 2a is ωa =
27.755 114 128 271 59 THz, which is the 98th mode in
Figure 1, and the frequency for Figure 2b is ωb =
28.945 186 759 191 19 THz, with the mode number 163.
If counted from the upper part of the b branch, the
mode number of ωb is also 98. We confirm that these
two frequencies ωa and ωb truly satisfy equation (20).
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Fig. 2. The extended electrostatic potential profiles of
four corresponding eigenfrequencies, exhibiting the quar-
tet property. (a) ω = 27.755 114 128 271 59 THz or
47.441 231 630 188 96 THz; (b) ω = 28.945 186 759 191 19 THz
or 44.174 855 574 875 30 THz.

By equation (20) we can also work out other two
corresponding frequencies ωc and ωd, with values as
44.174 855 574 875 30 THz and 47.441 231 630 188 96 THz
and mode numbers as 358 and 423, respectively. The
quartet of these four frequencies can be expressed by
a numerical relation 98 + 423 = 163 + 358 = 521 =
4 × (2l−1 + 2) + 1, where l = 8. Both electrostatic po-
tential profiles determined by ωa and ωd are identical,
as shown in Figure 2a; so are other two profiles with
ωb and ωc, as shown in Figure 2b. The potential pro-
files given by ωa(d) and ωb(c) are not completely the
same but they are very similar, and the main modifica-
tion is that the type of the electrostatic potential dis-
tribution changes from LSSLSLLSSLLSLSSL · · · into
SLLSLSSLLSSLSLLS · · · . The cause is that when
ωa(d) → ωb(c) the basic transfer matrices undergo MLL →
MT

LL and MSS → MT
SS, where T denotes the transpose

of matrices, but MSL → M∗
SL and MLS → M∗

LS, where
the symbol ∗ represents the following operation of ma-
trices: the second and the third matrix elements multi-
ply negative one and the first and the fourth elements
hold the line. Although the basic transfer matrices trans-
form as above, the arranging rule of the matrices does not
vary, i.e., the underlying structure feature, which origi-
nates from the TM sequence, is still preserved. Thus the
quartet among the four corresponding potential profiles
appears.



296 The European Physical Journal B

4 Summary

We have investigated the properties of coupled optical in-
terface modes in TM dielectric superlattices. The eigen-
modes have been calculated in the electrostatic limit
by transfer matrices. It has been found that a fre-
quency spectrum first splits into four branches, which in-
dicates the speciality of long wavelength optical phonons
in TM superlattices. Except for this point, the branch-
ing rules of every branch are completely the same as
those of the spectra of other excitations in TM structures
[3,11,12], but they are apparently different from the
branching rules in periodic and quasiperiodic Fibonacci
structures [8,10]. We have also proved rigorously that, ex-
cept for the potential profiles given by the sixteen frequen-
cies locating at the band edges, the electrostatic potential
distributions of TM dielectric superlattices are extended.
It indicates the TM structure is a distinctive aperiodic
structure that lacks translational invariance but supports
extended states, which is profoundly different from the
Fibonacci structures, where only critical eigenstates exist.
By critical, we here mean that the eigenstates are neither
extended nor localized, but belong to a rigorous singu-
lar continuous spectrum. Furthermore, the quartet of fre-
quency spectra and electrostatic potential profiles is elu-
cidated analytically and it exhibits the unique property
of coupled optical interface modes in TM dielectric su-
perlattices. Lastly, it should be emphasized that dielectric
superlattices can be fabricated nicely with current tech-
nology, so experimental observation may be fulfilled much
conveniently, such as by Raman light scattering, X-ray
diffraction measurement, and electron energy-loss spectra,
etc. Thus the features of elementary excitations in TM
structures will be illustrated.

This work was supported by the Provincial Natural Science
Foundation of Jiangsu BK2002086 and the State Key Program
for Basic Research of China 001CB610602.
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